Involvement of calcium-independent phospholipase A2 in hydrogen peroxide-induced accumulation of free fatty acids in human U937 cells.
نویسندگان
چکیده
Previous studies have demonstrated that U937 cells are able to mobilize arachidonic acid (AA) and synthesize prostaglandins in response to receptor-directed and soluble stimuli by a mechanism that involves the activation of Group IV cytosolic phospholipase A(2)alpha. In this paper we show that these cells also mobilize AA in response to an oxidative stress induced by H(2)O(2) through a mechanism that appears not to be mediated by cytosolic phospholipase A(2)alpha but by the calcium-independent Group VI phospholipase A(2) (iPLA(2)). This is supported by the following lines of evidence: (i) the response is essentially calcium-independent, (ii) it is inhibited by bromoenol lactone, and (iii) it is inhibited by an iPLA(2) antisense oligonucleotide. Enzyme assays conducted under a variety of conditions reveal that the specific activity of the iPLA(2) does not change as a result of H(2)O(2) exposure, which argues against the activation of a specific signaling cascade ending in the iPLA(2). Rather, the oxidant acts to perturb membrane homeostasis in a way that the enzyme susceptibility/accessibility to its substrate increases, and this results in altered fatty acid release. In support of this view, not only AA, but also other fatty acids, were found to be liberated in an iPLA(2)-dependent manner in the H(2)O(2)-treated cells. Collectively, these studies underscore the importance of the iPLA(2) in modulating homeostatic fatty acid deacylation reactions and document a potentially important route under pathophysiological conditions for increasing free fatty acid levels during oxidative stress.
منابع مشابه
Role of group VIA calcium-independent phospholipase A2 in arachidonic acid release, phospholipid fatty acid incorporation, and apoptosis in U937 cells responding to hydrogen peroxide.
Group VIA calcium-independent phospholipase A2 (iPLA2) has been shown to play a major role in regulating basal phospholipid deacylation reactions in certain cell types. More recently, roles for this enzyme have also been suggested in the destruction of membrane phospholipid during apoptosis and after oxidant injury. Proposed iPLA2 roles have rested heavily on the use of bromoenol lactone as an ...
متن کاملCalcium-independent phospholipase A2 mediates proliferation of human promonocytic U937 cells.
We have investigated the possible involvement of two intracellular phospholipases A(2), namely group VIA calcium-independent phospholipase A(2) (iPLA(2)-VIA) and group IVA cytosolic phospholipase A(2) (cPLA(2)alpha), in the regulation of human promonocytic U937 cell proliferation. Inhibition of iPLA(2)-VIA activity by either pharmacological inhibitors such as bromoenol lactone or methyl arachid...
متن کاملIntermembrane lipid transfer during Trypanosoma cruzi-induced erythrocyte membrane destabilization.
The ability of Trypanosoma cruzi to induce erythrocyte membrane destabilization in vitro was studied. Epimastigote forms adhered to human erythrocytes and caused fusion or lysis of the red cells, depending on the conditions of the interaction. Red cells were fused in the presence of calcium, while haemolysis was induced in the absence of the cation. Dextran 60 C facilitated fusion but delayed l...
متن کاملPurification of a 110-kilodalton cytosolic phospholipase A2 from the human monocytic cell line U937.
The major dithiothreitol-resistant phospholipase A2 activity present in the cytosol of U937 cells has been purified greater than 200,000-fold by sequential chromatography on phenyl-5PW, heparin-Sepharose CL-6B, high-performance hydroxylapatite, TSK-gel G3000-SW, and Mono Q columns. This 110-kDa cytosolic phospholipase A2 is distinct from the relatively small (14-kDa) dithiothreitol-sensitive ph...
متن کاملEndothelial eicosanoid metabolism and signal transduction during exposure to oxygen radicals injury.
Several physiological agonists that induce elevation of cytosolic free calcium (Ca2+)-levels act via receptor coupled G-proteins, involving activation of phospholipase C (PLC) and hydrolysis of phosphatidylinositol 4,5-bisphosphate. Activation of the inositol signal transduction pathway that precedes Ca2+ ion mobilization is a well accepted signaling pathway in endothelial cell eicosanoid synth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 277 43 شماره
صفحات -
تاریخ انتشار 2002